The diophantine problem of Frobenius: A close bound
نویسندگان
چکیده
The conductor of n positive integer numbers a l,a2, ... ,an' whose greatest coII1mon divisor is equal'to I, is'defmed as the th.e minimal K, such that for every m ~K , the equation a1x 1+a2X 2+ ... +an Xn=m, h!ls a solution over the nOI}negative integers. In this notewe give a polYIlomial aigorithm computing'a close bound ~ for the conductor K o( n given positive integers, when n is fixed. The bound B satisfies BIn SK SB . T ec hn io n C om pu te r Sc ie nc e D ep ar tm en t T eh ni ca l R ep or t C S0 48 3 19 87
منابع مشابه
An Estimate for Frobenius’ Diophantine Problem in Three Dimensions
We give upper and lower bounds for the largest integer not representable as a positive linear combination of three given integers, disproving an upper bound conjectured by Beck, Einstein and Zacks.
متن کاملAn Optimal Lower Bound for the Diophantine Problem of Frobenius by Iskander ALIEV
Given N positive integers a1, . . . , aN with GCD (a1, . . . , aN) = 1, let fN denote the largest natural number which is not a positive integer combination of a1, . . . , aN . This paper gives an optimal lower bound for fN in terms of the absolute inhomogeneous minimum of the standard (N − 1)-simplex.
متن کاملAn Optimal Lower Bound for the Diophantine Problem of Frobenius
Given N positive integers a1, . . . , aN with GCD (a1, . . . , aN) = 1, let fN denote the largest natural number which is not a positive integer combination of a1, . . . , aN . This paper gives an optimal lower bound for fN in terms of the absolute inhomogeneous minimum of the standard (N − 1)-simplex.
متن کاملA geometric approach to the diophantine Frobenius problem
It turns out that all instances of the diophantine Frobenius problem for three coprime ai have a common geometric structure which is independent of arithmetic coincidences among the ai. By exploiting this structure we easily obtain Johnson’s formula for the largest non-representable z, as well as a formula for the number of such z. A procedure is described which computes these quantities in O(l...
متن کاملThe Frobenius Problem, Rational Polytopes, and Fourier-Dedekind Sums
where a1, . . . , an are positive integers. This polytope is closely related to the linear Diophantine problem of Frobenius: given relatively prime positive integers a1, . . . , an, find the largest value of t (the Frobenius number) such that m1a1 + · · · + mnan = t has no solution in positive integers m1, . . . , mn. This is equivalent to the problem of finding the largest dilate tP such that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 23 شماره
صفحات -
تاریخ انتشار 1989